

Enseignant ·e·s: Dovi, Huruguen, Maatouk

Géométrie Analytique - CMS

6 novembre 2023 Durée : 105 minutes

Contrôle 1 (Corrigé)

SCIPER: XXXXXX

Attendez le début de l'épreuve avant de tourner la page. Ce document est imprimé rectoverso, il contient 11 questions et 12 pages, les dernières pouvant être vides. Il y a 35 points au total. Ne pas dégrafer.

- Posez votre carte d'étudiant sur la table et vérifiez votre nom et votre numéro SCIPER sur la première page.
- Aucun document n'est autorisé.
- L'utilisation d'une calculatrice et de tout outil électronique est interdite pendant l'épreuve.
- Pour les questions à choix multiple, on comptera:
 - les points indiqués si la réponse est correcte,
 - 0 point si il n'y a aucune ou plus d'une réponse inscrite,
 - 0 point si la réponse est incorrecte.
- Utilisez un **stylo** à encre **noire ou bleu foncé** et effacez proprement avec du **correcteur blanc** si nécessaire.
- Si une question est erronée, l'enseignant se réserve le droit de l'annuler.
- Les dessins peuvent être faits au crayon.
- Répondez dans l'espace prévu (aucune feuille supplémentaire ne sera fournie).
- Les brouillons ne sont pas à rendre: ils ne seront pas corrigés.

Respectez les consignes suivantes Observe this guidelines Beachten Sie bitte die unten stehenden Richtlinien				
choisir une réponse select an answer Antwort auswählen	ne PAS choisir une réponse NOT select an answer NICHT Antwort auswählen	Corriger une réponse Correct an answer Antwort korrigieren		
ce qu'il ne faut <u>PAS</u> faire what should <u>NOT</u> be done was man <u>NICHT</u> tun sollte				

Première partie, questions à choix unique

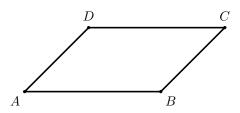
Pour chaque question, marquer la case correspondante à la réponse correcte sans faire de ratures. Il n'y a qu'une seule réponse correcte par question.

Enoncé

Soit ABCD le parallélogramme tel que $||\overrightarrow{AB}|| = 3$, $||\overrightarrow{AD}|| = 2$, et l'angle entre $||\overrightarrow{AB}||$ et $||\overrightarrow{AD}||$ vaut $\pi/4$. On donne les deux repères suivants du plan: $R_1 = (A, \overrightarrow{AB}, \overrightarrow{AD})$ et $R_2 = (C, \overrightarrow{AC} + \overrightarrow{BD}, \overrightarrow{BD})$. On donne :

$$I\left(-\frac{1}{2},\frac{1}{2}\right) \text{ dans } R_1, \quad J\left(-\frac{1}{2},\frac{1}{2}\right) \text{ dans } R_2, \quad \overrightarrow{u}\begin{pmatrix}1\\-2\end{pmatrix} \text{ dans } R_1.$$

Indication: pour résoudre les questions ci-dessous, vous pouvez commencer par construire les points donnés.



Question 1 (2 points)

Quelles sont les coordonnées de I dans R_2 ?

$$Correction: \overrightarrow{AI} = -\frac{1}{2}\overrightarrow{AB} + \frac{1}{2}\overrightarrow{AD} = \frac{1}{2}\overrightarrow{BD} \quad \Rightarrow \quad \overrightarrow{CI} = -\overrightarrow{AC} + \overrightarrow{AI} = -(\overrightarrow{AC} + \overrightarrow{BD}) + \frac{3}{2}\overrightarrow{BD}$$

Question 2 (2 points)

Laquelle des affirmations suivantes est vraie?

Correction: Dans R_2 on a $I(-1,\frac{3}{2})$ et $J(-\frac{1}{2},\frac{1}{2})$, si bien que $\overrightarrow{IJ}\begin{pmatrix} \frac{1}{2} \\ -1 \end{pmatrix}$, autrement dit:

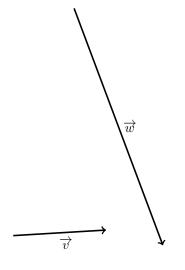
$$\overrightarrow{IJ} = \frac{1}{2}(\overrightarrow{AC} + \overrightarrow{BD}) - \overrightarrow{BD} = \frac{1}{2}(\overrightarrow{AC} - \overrightarrow{BD}) = \overrightarrow{AB}$$

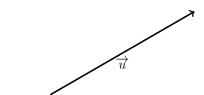
Question 3 (2 points)

Que vaut la norme de \overrightarrow{u} ?

$$Correction: ||\overrightarrow{u}||^2 = ||\overrightarrow{AB} - 2\overrightarrow{AD}||^2 = ||\overrightarrow{AB}||^2 + 4||\overrightarrow{AD}||^2 - 4\overrightarrow{AB} \cdot \overrightarrow{AD} = 9 + 16 - 24\cos(\frac{\pi}{4}) = 25 - 12\sqrt{2}.$$

On donne les trois vecteurs \overrightarrow{u} , \overrightarrow{v} et \overrightarrow{w} ci-dessous dans le plan, avec \overrightarrow{u} de norme 4. Vous pouvez écrire sur le dessin donné.





Question 4 (2 points)

Une des affirmations ci-dessous est vraie. Laquelle?

$$\overrightarrow{v} \cdot \overrightarrow{w} > ||\overrightarrow{w}||^2$$

$$(\overrightarrow{u} - \overrightarrow{v}) \cdot (\overrightarrow{u} + \overrightarrow{v}) > 0$$

$$Correction: \ (\overrightarrow{u}-\overrightarrow{v})\cdot(\overrightarrow{u}+\overrightarrow{v})>0 \quad \Leftrightarrow \quad ||\overrightarrow{u}||^2-||\overrightarrow{v}||^2>0 \quad \Leftrightarrow \quad ||\overrightarrow{u}||>||\overrightarrow{v}||.$$

$$1 \rightarrow 112$$
 $11 \rightarrow 112 \rightarrow 0$

$$||\overrightarrow{\jmath l}|| > ||\overrightarrow{\jmath l}||$$

Question 5 (2 points)

Une des affirmations ci-dessous est vraie. Laquelle?

$$\overrightarrow{u} \cdot \overrightarrow{v} = 4$$

$$\overrightarrow{u} \cdot \overrightarrow{w} = -2$$

$$\overrightarrow{u} \cdot \overrightarrow{v} = 2$$

$$\overrightarrow{u} \cdot \overrightarrow{w} = -4$$

 $Correction: p_{\overrightarrow{u}}(\overrightarrow{w}) = -\tfrac{1}{4}\overrightarrow{u} \quad \Leftrightarrow \quad \overrightarrow{u} \cdot \overrightarrow{w} = -4$

Question 6 (2 points)

Lequel des vecteurs ci-dessous a la plus grande norme?

$$p_{\overrightarrow{v}}(\overrightarrow{w})$$

$$p_{\overrightarrow{u}}(\overrightarrow{w})$$

$$p_{\overrightarrow{w}}(\overrightarrow{v})$$

$$p_{\overrightarrow{u}}(\overrightarrow{u})$$

Correction: Tracer les quatre projetés sur le dessin.

Enoncé

Dans le plan muni d'un repère orthonormé direct on considère le triangle ABC, où :

$$A(7,4)$$
, $B(8,5)$, $C(6,11)$

Question 7 (2 points)

Parmi les équations suivantes, laquelle décrit la bissectrice au sommet A?

$$3x - y = 17$$

$$3x + y = 25$$

 $Correction: \ Le \ vecteurs \ \overrightarrow{AB} \begin{pmatrix} 1 \\ 1 \end{pmatrix} \ est \ 5 \ fois \ plus \ court \ que \ le \ vecteur \ \overrightarrow{AC} \begin{pmatrix} -1 \\ 7 \end{pmatrix}. \ Par \ conséquent, \ 5\overrightarrow{AB} + (1)$

 $\overrightarrow{AC} \begin{pmatrix} 4 \\ 12 \end{pmatrix}$ est directeur de la bissectrice.

Question 8 (2 points)

L'équation x+y=17 décrit ...

la médiatrice	$d\mathbf{u}$	segment	AB
---------------	---------------	---------	----

la hauteur issue de C

$$\hfill \square$$
la médiatrice du segment AC

 \Box la hauteur issue de A

 $Correction: Cette \ droite \ est \ normale \ au \ vecteur \ \overrightarrow{AB} egin{pmatrix} 1 \\ 1 \end{pmatrix} \ et \ elle \ passe \ par \ C \ car \ 6+11=17.$

Question 9 (2 points)

Parmi les points suivants, lequel se trouve sur la médiane issue de B?

Correction : La médiane issue de B passe par B(8,5) et par le milieu $I(\frac{13}{2},\frac{15}{2})$ de AC. Elle admet pour $\'equation\ cart\'esienne\ 5x+3y=55.$

Répondre dans l'espace dédié. Votre réponse doit être soigneusement justifiée, toutes les étapes de votre raisonnement doivent figurer dans votre réponse. Laisser libres les cases à cocher: elles sont réservées au correcteur.

Question 10: Cette question est notée sur 9 points.

Dans le plan, on donne les points A, B et C vérifiant les conditions indiquées sur le dessin ci-dessous :

$$||\overrightarrow{AB}|| = 4$$
, $||\overrightarrow{AC}|| = 3$, angle entre \overrightarrow{AB} et $\overrightarrow{AC} = 60^{\circ}$.

(a) Soit le point I vérifiant l'égalité vectorielle :

$$2\overrightarrow{AI} + \overrightarrow{AB} = 4\overrightarrow{CI}.$$

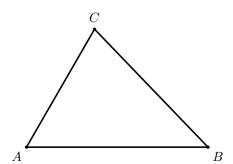
Exprimer \overrightarrow{AI} en fonction de \overrightarrow{AB} et \overrightarrow{AC} , puis placer le point I sur la figure.

(b) On appelle d le lieu des points M du plan satisfaisant la condition :

$$\overrightarrow{AM} \cdot \overrightarrow{AB} = \alpha$$

où α est un réel donné. Sans faire aucun calcul, que pouvez-vous dire de ce lieu ?

- (c) Donner une équation vectorielle, vue depuis A, de la droite g parallèle à (AC) passant par B.
- (d) Soit J le point d'intersection de d et g. Exprimer le vecteur \overrightarrow{BJ} en fonction de \overrightarrow{AC} et du paramètre α .
- (e) Pour quelle valeur de α a-t-on $I \in d$? Pour cette valeur de α , placer le point J sur la figure.

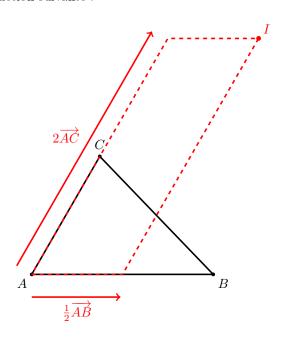


Solution

(a) On trouve:

$$2\overrightarrow{AI} + \overrightarrow{AB} = 4\underbrace{\overrightarrow{CI}}_{\overrightarrow{CA} + \overrightarrow{AI}} = 4\overrightarrow{CA} + 4\overrightarrow{AI} \quad \Leftrightarrow \quad \overrightarrow{AB} + 4\overrightarrow{AC} = 2\overrightarrow{AI} \quad \Leftrightarrow \quad \overrightarrow{AI} = \frac{1}{2}\overrightarrow{AB} + 2\overrightarrow{AC}.$$

D'où l'on déduit la construction suivante :



(b) d est une droite perpendiculaire à (AB), c'est-à-dire admettant \overrightarrow{AB} pour vecteur normal.

(c) La droite g admet pour équation vectorielle :

$$\overrightarrow{AM} = \overrightarrow{AB} + t\overrightarrow{AC}, \quad t \in \mathbb{R}.$$

(d) Comme le point J appartient à la droite g il vérifie, d'après l'équation écrite au (b) :

$$\overrightarrow{AJ} = \overrightarrow{AB} + t\overrightarrow{AC} \quad \Leftrightarrow \quad \overrightarrow{BJ} = t\overrightarrow{AC}$$

pour une certaine valeur de t. Pour trouver cette valeur, exprimons que J est aussi sur la droite d:

$$\overrightarrow{AJ} \cdot \overrightarrow{AB} = \alpha \quad \Rightarrow \quad (\overrightarrow{AB} + t\overrightarrow{AC}) \cdot \overrightarrow{AB} = ||\overrightarrow{AB}||^2 + t\overrightarrow{AC} \cdot \overrightarrow{AB} = \alpha.$$

D'après la donnée, on sait que :

$$||\overrightarrow{AB}||^2 = 16$$
 et $\overrightarrow{AC} \cdot \overrightarrow{AB} = 3 \times 4 \times \cos(60^\circ) = 6$.

Il vient alors:

$$16 + 6t = \alpha \quad \Rightarrow \quad t = \frac{\alpha - 16}{6}.$$

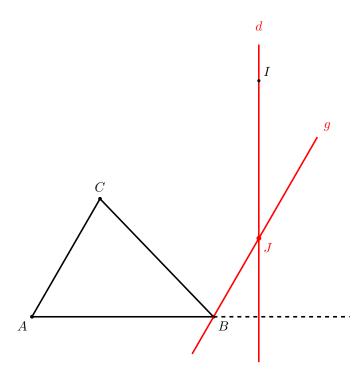
En conclusion, on a donc que:

$$\overrightarrow{BJ} = \frac{\alpha - 16}{6} \overrightarrow{AC}.$$

(e) Le point I appartient à d si et seulement si on a :

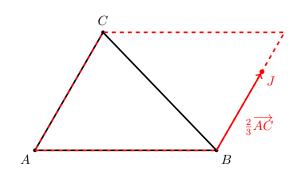
$$\overrightarrow{AI} \cdot \overrightarrow{AB} = \alpha \quad \Leftrightarrow \quad \alpha = (\frac{1}{2}\overrightarrow{AB} + 2\overrightarrow{AC}) \cdot \overrightarrow{AB} = \frac{1}{2}||\overrightarrow{AB}||^2 + 2\overrightarrow{AC} \cdot \overrightarrow{AB} = 20$$

On peut alors imaginer construire le point J d'au moins deux manières. La première, comme intersersection de d et g:



Pour la seconde, utilisons la formule trouvée au (d) ainsi que la valeur exacte $\alpha=20$ identifiée ci-dessus. Cela montre que :

$$\overrightarrow{BJ} = \frac{20 - 16}{6} \overrightarrow{AC} = \frac{2}{3} \overrightarrow{AC}.$$



Dans le plan muni d'un repère orthonormé direct, on donne:

$$A(6,6)$$
, $B(8,-4)$, $m:3x-2y+7=0$.

Soit le triangle ABC tel que m est la médiatrice de BC, et soit d la parallèle à (BC) passant par A.

- (a) Déterminer les coordonnées du point C.
- (b) Trouver les coordonnées du point M sur d tel que le triangle ABM soit d'orientation directe et ait une aire valant un douzième de l'aire du triangle ABC.

Solution

(a) La droite (BC) est perpendiculaire à m et passe par B. Elle admet pour équation cartésienne :

$$(BC): 2x + 3y = 4.$$

Soit H le point d'intersection des droites (BC) et m. On trouve ses coordonnées en résolvant :

$$\left\{ \begin{array}{l} y=\frac{3}{2}x+\frac{7}{2} \\ 2x+3y=4 \end{array} \right. \Leftrightarrow \left\{ \begin{array}{l} y=\frac{3}{2}x+\frac{7}{2} \\ \frac{13}{2}x+\frac{21}{2}=4 \end{array} \right. \Leftrightarrow \left\{ \begin{array}{l} x=-1 \\ y=2 \, . \end{array} \right.$$

Comme H est le milieu de BC, on voit que le point C est obtenu en translatant H(-1,2) du vecteur $\overrightarrow{BH}\left(\begin{smallmatrix} -9\\ 6 \end{smallmatrix} \right)$: il a donc pour coordonnées (-10,8).

(b) La droite d passe par A(6,6) et admet pour vecteur directeur $\overrightarrow{u}\left(\begin{array}{c}3\\-2\end{array}\right)$ (puisqu'elle est parallèle à (BC)). Un point M se trouvant sur d a donc ses coordonnées de la forme :

$$M(6+3t,6-2t)$$

pour un certain réel t. Calculons à présent l'aire du triangle ABC :

$$\overrightarrow{AB}\left(\begin{smallmatrix}2\\-10\end{smallmatrix}\right) \text{ et } \overrightarrow{AC}\left(\begin{smallmatrix}-16\\2\end{smallmatrix}\right) \quad \Rightarrow \quad \operatorname{aire}(ABC) = |\frac{1}{2}\underbrace{\det_{\mathcal{R}}(\overrightarrow{AB},\overrightarrow{AC})}_{\left|\begin{smallmatrix}2\\-10\end{smallmatrix}\right|}| = 78.$$

On souhaite que le triangle ABM soit orienté directement et ait une aire de $\frac{78}{12} = \frac{13}{2}$, autrement dit :

$$\underbrace{\frac{1}{2}\underbrace{\det_{\mathcal{R}}(\overrightarrow{AB},\overrightarrow{AM})}_{\left|\begin{array}{c}2\\-10\end{array}\right|}=\frac{13}{2}\quad\Leftrightarrow\quad 13t=\frac{13}{2}\quad\Leftrightarrow\quad t=\frac{1}{2}.$$

Par conséquent, M a pour coordonnées $(6 + \frac{3}{2}, 6 - 1) = (\frac{15}{2}, 5)$.

